Stability Diagram Analysis
Consider the homogeneous two-dimensional linear system
\[ \mathbf{x}'=\mathbf{A}\mathbf{x}\]
where \(\mathbf{A}\) is a constant \(2\times 2\) real-valued matrix. Assume that \( 0\) is not an eigenvalue of \(\mathbf{A}\), i.e. \(\text{det}\mathbf{A}\neq 0\). Then \(\mathbf{0}=(0,0)\) is the only critical point. The characteristic equation of \(\mathbf{A}\) is
\[ \mathbf{x}'=\mathbf{A}\mathbf{x}\]
where \(\mathbf{A}\) is a constant \(2\times 2\) real-valued matrix. Assume that \( 0\) is not an eigenvalue of \(\mathbf{A}\), i.e. \(\text{det}\mathbf{A}\neq 0\). Then \(\mathbf{0}=(0,0)\) is the only critical point. The characteristic equation of \(\mathbf{A}\) is
\[ \lambda^2-(\text{tr}\mathbf{A})\lambda+\text{det}\mathbf{A}=0.\]
Define the discriminant
\[\Delta=(\text{tr}\mathbf{A})^2-4\text{det}\mathbf{A}.\]
Let \(\lambda_1, \lambda_2\) be the eigenvalues of \(\mathbf{A}\). Then \(\lambda_1, \lambda_2\) are the roots of the characteristic equation of \(\mathbf{A}\), i.e.
\[(\lambda-\lambda_1)(\lambda-\lambda_2)=0.\]
Hence we get
\begin{aligned}
\text{tr}\mathbf{A} &= \lambda_1+\lambda_2 \\
\det\mathbf{A}&= \lambda_1\lambda_2.
\end{aligned}
Also,
\[\lambda_{1,2}=\frac{1}{2}(\text{tr}\mathbf{A}\pm\sqrt{\Delta}).\]
We determine the stability of the critical point by calculating the eigenvalues of \(\mathbf{A}\). From now on, we can directly determine it by observing \(\text{tr}\mathbf{A}\), \(\det\mathbf{A}\) and \(\Delta\).
Case 1. \(\text{det}\mathbf{A}<0\)
It must be real eigenvalues with opposite sign. In this case, \(\mathbf{0}\) is an unstable saddle point.
Case 2. \(\text{det}\mathbf{A}>0\)
\[\Delta=(\text{tr}\mathbf{A})^2-4\text{det}\mathbf{A}.\]
Let \(\lambda_1, \lambda_2\) be the eigenvalues of \(\mathbf{A}\). Then \(\lambda_1, \lambda_2\) are the roots of the characteristic equation of \(\mathbf{A}\), i.e.
\[(\lambda-\lambda_1)(\lambda-\lambda_2)=0.\]
Hence we get
\begin{aligned}
\text{tr}\mathbf{A} &= \lambda_1+\lambda_2 \\
\det\mathbf{A}&= \lambda_1\lambda_2.
\end{aligned}
Also,
\[\lambda_{1,2}=\frac{1}{2}(\text{tr}\mathbf{A}\pm\sqrt{\Delta}).\]
We determine the stability of the critical point by calculating the eigenvalues of \(\mathbf{A}\). From now on, we can directly determine it by observing \(\text{tr}\mathbf{A}\), \(\det\mathbf{A}\) and \(\Delta\).
Case 1. \(\text{det}\mathbf{A}<0\)
It must be real eigenvalues with opposite sign. In this case, \(\mathbf{0}\) is an unstable saddle point.
Case 2. \(\text{det}\mathbf{A}>0\)
- \(\text{tr}\mathbf{A}=0\)
It must be pure imaginary eigenvalues. In this case, \(\mathbf{0}\) is a stable center.
- \(\text{tr}\mathbf{A}<0\)
It must be two negative real eigenvalues or complex conjugate eigenvalues with negative real part. In this case, \(\mathbf{0}\) is asymptotically stable.
- \(\text{tr}\mathbf{A}>0\) It must be two positive real eigenvalues or complex conjugate eigenvalues with positive real part. In this case, \(\mathbf{0}\) is unstable.
One of eigenvalues must be zero.
Then we can portrait the following stability diagram.
You can check "Stability Diagram 學生作品" for the reference.
Then we can portrait the following stability diagram.
You can check "Stability Diagram 學生作品" for the reference.
留言
張貼留言