Stability Diagram Analysis

Consider the homogeneous two-dimensional linear system
x=Ax
where A is a constant 2×2 real-valued matrix. Assume that 0 is not an eigenvalue of A, i.e. detA0. Then 0=(0,0) is the only critical point. The characteristic equation of A is
λ2(trA)λ+detA=0.
Define the discriminant
Δ=(trA)24detA.
Let λ1,λ2 be the eigenvalues of A. Then λ1,λ2 are the roots of the characteristic equation of A, i.e.
(λλ1)(λλ2)=0.
Hence we get
trA=λ1+λ2detA=λ1λ2.
Also,
λ1,2=12(trA±Δ).
We determine the stability of the critical point by calculating the eigenvalues of A. From now on, we can directly determine it by observing trA, detA and Δ.


Case 1. detA<0
It must be real eigenvalues with opposite sign. In this case, 0 is an unstable saddle point.

Case 2. detA>0
  • trA=0
    It must be pure imaginary eigenvalues. In this case, 0 is a stable center.

  • trA<0

  • It must be two negative real eigenvalues or complex conjugate eigenvalues with negative real part. In this case, 0 is asymptotically stable.

  • trA>0 
  • It must be two positive real eigenvalues or complex conjugate eigenvalues with positive real part. In this case, 0 is unstable.
Case 3. detA=0
One of eigenvalues must be zero.


Then we can portrait the following stability diagram.

You can check "Stability Diagram 學生作品" for the reference.

留言